
Circuit Synthesis Project 
Hershel Millman 
1210541979 



Introduction

Circuit design is often a tedious process. Designing an analog circuit generally requires one to 
intimately understand the operation of a circuit, and how each of the design parameters affect 
the performance. However, when one needs a simple circuit to be designed as part of a larger 
project, designing such a circuit, although fairly simple, takes time away from other more 
important tasks. Automating the design process of simple circuits allows engineers to spend 
their time on more important problems. Additionally, automated processes often produce 
better results in a shorter amount of time than an engineer could designing by hand.


Approaches to Automation

	 When it comes to automating the design of a circuit, the simplest method is to brute-
force it — to try every possible combination of parameters. With circuits larger than a few 
parameters, this method becomes infeasible: a circuit containing 10 parameters which have 
only 20 possible values each, the number of combinations to test would be 10.24 trillion. This 
is completely impractical.

	 Another possible method is through machine learning algorithms. However, in order for 
machine learning algorithms to be effective, often large amounts of data is required. Tens of 
thousands or hundreds of thousands of already-designed, functional circuits would be required 
for a neural network or similar algorithm to learn how to create a circuit, and the training time 
for these networks would be prohibitively long.

	 Fortunately, there is a method that is not prohibitively computationally expensive, and 
does not require an exhaustive search of parameters: simulated annealing. Simulated 
annealing is a “perturb and observe” method, where random changes are made to the circuit 
parameters, and a scoring metric is used to determine whether the changes should be kept or 
discarded. Three circuits were synthesized using a simulated annealing method I have come up 
with, based loosely on a method found in [1].


My Method and Original Circuit

The first circuit used to develop the algorithm was a 5-
transistor amplifier. The schematic for this amplifier is 
shown to the right in Figure 1. The bottom transistor 
was biased with a voltage source for simplicity. The 
circuit had four variable parameters: Vbias4, Wp (width 
of PMOS), Wn (width of input pair), and Wtail (width of 
tail transistor). The specs required of the circuit were 
DC gain, 3dB frequency, unity gain frequency, and DC 
current consumption.

	 First, the values of the parameters were given 
random values, with reasonable upper limits and lower 
limits. Then the program entered the loop consisting of 
four steps, which are broken down on the following 
pages. A temperature parameter was also chosen, the 
purpose of which will be discussed later.

	 First, the program entered a design loop. Three 
random numbers were generated: one which decided 
which parameter to change, one which determined 
how much to change it, and one which determined 

Figure 1: 5T Op-amp



whether the change would increase or decrease the value of that parameter. Then, a simulation 
was run with these new parameters using open-source circuit simulator ngspice. 

	 Next, the results of the simulation had to be analyzed to determine whether they were 
valid. The gain and phase curves presented a challenge. Visually identifying a valid gain curve 
is trivial, but it was necessary to develop a function to programmatically determine the validity 
of the curve. The method eventually decided on was one which analyzes three attributes of the 
curve: the flatness of the top near DC, the height of the flat top, and the existence of a unity 
gain frequency. To determine whether the top of the curve was sufficiently flat, five points were 
sampled between 10 Hz and 1 kHz, and the relative differences in magnitude were identified. If 
the difference between the maximum value and minimum value in that range was greater than 
0.1 dB, the curve was considered invalid, and the function would return without extracting any 
more information about that iteration. If the curve was flat on top, but the magnitude of the gain 
was not greater than 10 dB, the curve was considered invalid. And finally, if the gain curve did 
not cross 0 dB, the curve was considered invalid. If any of these conditions cause the curve to 
be considered invalid, the function would return a value to indicate that the shape of the curve 
was incorrect, which would affect the scoring metric discussed in the following section. If both 
the gain and phase curves were considered valid, the values of DC power, 3 dB point, and 
unity gain frequency were obtained from the extraction function. Once these values were 
returned, the circuit was given a score based on its performance.

	 Each design specification was assigned a weight based on its relative importance. The 
weights for magnitude of DC Gain, 3dB frequency, unity gain frequency, and DC current were 
2, 1, 1, and 2 respectively, with a weight of 100 given to the shape of the gain curve. If the 
shape of the gain curve was incorrect, the scores for the other specifications were given 
default values, which meant that the only way for the score to improve would be for the 
algorithm to find a set of parameters which produced a gain curve of the correct shape. If the 
shape of the gain curve was correct, the scores of the other values were calculated using the 
following formulas. If the spec was an upper limit, such as power consumption, the score 
would be calculated with the following function:


If the spec was a lower limit, such as DC gain, the score would be calculated with the formula 
below:


where s is the score, a is the achieved value and g is the spec value. The value 1.2 was chosen 
through trial and error. The lower the score, the better the circuit had performed.

	 Once the circuit performance had a score, the program would compare that score to 
the previous score. If the score was better than the previous iteration, the new values of the 
parameters would be kept to progress further in the next iteration. If the score was higher, the 
program would generate a random number between 0 and 1. If that number was lower than the 
temperature parameter mentioned above, the new set of parameters would be kept, even 
though it was worse. The temperature chosen was .15, giving a design a 15% chance of being 
kept even if the performance was worse. The reason for this practice is that it allows the 
algorithm to avoid getting trapped in local minima, meaning that it is able to optimize on a 
more global scale.

	 The algorithm would continue to loop until a design was found which had a 
performance score of 0. At this point, the program would return, print out the values of the 
parameters, and plot the progressions through the iterations. A sample output is shown at the 
top of the following page in Figure 2.


s = 1.2(a−g)/g i f a > g, el se s = 0

s = 1.2(g−a)/g i f a < g, el se s = 0



Figure 2: Progression of Parameters and Final Results

	 The algorithm generally converges within 250 iterations, and takes approximately 8 
seconds to arrive at a solution. As can be seen from the plot of Wtail, the parameters can vary 
upwards and downwards and are not necessarily trapped in one region or range of values. This 
simple circuit was able to be solved fairly quickly, but what about something a bit more 
complicated?


Two-Stage Miller-Compensated Op Amp

	 The next circuit to be 
synthesized was a two-stage 
Miller compensated 
operational amplifier, the 
schematic of which is shown 
to the right in Figure 3. The 
parameters were given 
reasonable ranges, and a 
similar algorithm was used to 
synthesize parameter values. 
However, the heightened 
complexity of the circuit 
required some changes to 
the algorithm. The 5-
transistor op amp previously 
simulated had only 4 
parameters and 4 specs. 
This amplifier has 10 design 
parameters, and was 
designed to meet 5 
specifications. One major change was made to the scoring function for this design: the shape 
of the phase curve was taken into account, due to the more complicated AC response 
introduced by the Miller compensation. In order to make the test computationally efficient, the 

Figure 3: Two-Stage Miller Compensated Op Amp



phase curve was analyzed to ensure that each value along the curve was lower than the one 
preceding it. This ensured a monotonic response and allowed for a fast check for validity.

	 Designing this amplifier by hand took my peers roughly a week in my Analog Integrated 
Circuits course. I had written a script to perform the design for me, but that script utilized the 
brute force method, and checked every possible transistor value on the grid within a 
reasonable range. This process took upwards of 14 hours of simulation time on the EECAD 
servers. Using my simulated annealing method, the design shown below in Figure 4 was 
synthesized to meet all required specs in 1263 iterations in only 1 minute and 2.83 seconds 
using random initializations of parameters.


Once these results were obtained, it was time to move on to an LDO.


LDO Design

The LDO architecture chosen is shown to the 
right in Figure 5. Instead of using a bandgap 
reference I used a voltage source, for simplicity 
of simulation. The amplifier used was an OTA 
with a current mirror, the schematic of which is 
shown on the following page in Figure 6. To 
achieve a more robust design, the goal was to 
design over a range of operating conditions. 
The specs that were initially designed for were 
open loop phase margin, and PSRR. The 
dropout voltage was designed to be .95 V.


Figure 4: Results of Two-Stage Op-Amp Synthesis

Figure 5: LDO Architecture



The specification for PSRR was -28 dB, and the specification for phase margin was 60 
degrees. The corners to meet the specifications are tabulated below in Table 1:


However, even though there were only two specifications to meet, the algorithm was not robust 
enough to meet them easily. It took many attempts and different starting points to even 
converge one time. The curves for PSRR and Gain and Phase are shown below in Figure 6, 
along with the final circuit parameters.


Input Voltage Output Voltage Load Current

2.4 2.1 .15mA

2.6 2.1 .15mA

2.4 2.3 .15mA

2.6 2.3 .15mA

2.4 2.1 20mA

2.6 2.1 20mA

2.4 2.3 20mA

2.6 2.3 20mA

Figure 6: PSRR, Gain and Phase, and Circuit Parameters



Unfortunately, when the ranges of the current or voltages were increased even slightly, the 
algorithm became too unstable and would not converge.


Conclusion

	 The algorithm I have come up with has proven itself to be highly capable with some 
circuits, and very lacking with others. The performance of the algorithm when it comes to 
amplifier design is incredible, and allows for extremely fast design and optimization. However, 
when it comes to LDO synthesis, the algorithm is not as robust. One reason for this is that it is 
difficult to create scoring methods that are implemented by a computer program that 
accurately reflect the performance of the LDO. While it is easy to visually determine the quality 
of a voltage regulator, automating a process that tends towards improvement is difficult and 
requires more knowledge of the circuit at hand and of optimization techniques.

	 Future work in this area would be to create semi-random simulated annealing. This 
could be done by keeping track of which parameters are most closely correlated with which 
performance metrics, and determining when and how to alter the parameters to improve the 
score. Additional future work could also include switching between multiple architectures when 
one is not improving sufficiently to prevent stagnation of results.

	 The algorithm I have come up with is one that is capable of being applied to many 
analog circuit design problems, and could be a great time saver for many engineers.


Code

All code and simulation files are in a Google Drive folder accessible at the following link.

https://drive.google.com/drive/folders/11SOqBVCkxysfRO1g3KiIoT16IjbT0m3e?usp=sharing




Works Cited

[1] Phelps, R. 2000. ‘Anaconda: Simulation-Based Synthesis of Analog Circuits Via Stochastic 
Pattern Search’. IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, Vol. 19, No. 6 


