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ABSTRACT 
In this work, we explore the feasibility of using machine learning techniques to extract Schottky 

diode parameters from IV and CV characteristic curves. The principal goal is to determine an 
algorithm which can extract multiple Schottky diode parameters at once with high accuracy, and 
works with minimal data. The parameters of interest for this project include substrate material, 
contact material, substrate doping concentration, guardring doping concentration, contact length, 
electron affinity and the work function of the metal. The programming language Python is used for 
two tasks. First, it is used to generate random combinations of parameters, run a Schottky diode 
simulation with those parameters utilizing Silvaco ATLAS, and save the results. This process is 
repeated thousands of times to obtain data for the next step. Secondly, Python is used to clean up 
the data into a more easily processable format, develop a neural network using the PyTorch deep 
learning framework, and train and test the network. The network is scored for its accuracy and the 
results are compared to a set of hand calculations. 

Keywords: Schottky Diode, ML Semiconductors, Parameter Regression 

_________________________________________________	

I. INTRODUCTION 
Knowing the parameters that characterize a 

semiconductor device is essential when 
developing circuit designs. Given a sample 
device, the process of extracting material 
parameters is often a long and tedious 
process. This process is referred to as 
semiconductor characterization, and involves 
measuring the responses of the device to 
various stimuli and analyzing the resulting 
behavior to extract material or behavioral 
parameters. In this work, we explore the 
characterization of Schottky diodes. 

I.a. Schottky Basics 
A Schottky diode is the formation of a 

potential barrier between a metal and a 
semiconductor. Some metals used to construct 
these types of molybdenum, chromium, and 
tungsten[1]. These metals all have different 
work functions, and as such, each material 
has a unique impact of the behavior of the 
device it helps make up. Figure 1 on the 
following page shows a cross-section 
representation  of a Schottky diode. 

Forward conduction occurs when electrons 
pass over the potential barrier from the n-type 
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semiconductor to the barrier metal, and vice 
versa for conduction. Reverse conduction is 
impeded by the guard rings, which reduce the 
elector field at the edge of the metal contact 
area. In Figure 3, the guard rings are not 
shown, but they are positioned directly 
beneath the intersection of the silicon oxide 
and the barrier metal on either side of the 
space charge ayer. Compared to a typical p-n 
junction diode, Schottky diodes have a very 
low forward voltage drop, a high current 
density, and fast reverse transit times [2]. 

Schottky diodes are widely used for high 
frequency and quick switching applications 
such as radio frequency circuitry, mixers, and 
rectifier in power applications etc. Therefore, 
the accurate extraction of the device 
parameters which further characterize the 
metal-semiconductor junction is vital. We 
have developed a basic machine learning 
algorithm for extraction of Schottky diode 
metal-semiconductor junction device 
parameters from easily obtainable data. The 
data that that has been attained for each 
device includes IV and CV characteristic 
curves, which are generated with Silvaco 
simulations. The device parameters of interest 
for the purpose of this study were 
semiconductor type, metal contact material, 
doping concentration of the n-type region, 
doping concentration of the guard rings, size 

in the x direction, size in the y direction, 
electron affinity and metal work function. 

I.b. Semiconductor Material 
Semiconductor type is an important 

parameter to consider in order to accurately 
characterize the metal-semiconductor 
junction. The semiconductor type will change 
the bandgap of the material and as a result the 
carrier concentration. Therefore, the different 
semiconductor types will showcase different 
carrier densities for each applied voltage. 
Electron affinity will change for various 
semiconductor types. Seen from equation (1), 
barrier height will vary as a result of electron 
affinity [3]. In order to determine the 
semiconductor type, the I-V curve will be 
analyzed within the algorithm for the turn on 
voltage. 

I.c Contact Material 
Another important parameter within 

Schottky diodes is the metal material contact. 
Different metals will showcase higher or 
lower work functions. The change in work 
function will result in an increase or decrease 
in barrier height seen in (1). Contact 
resistivity will differ for specific metal 
contacts. In order to determine the metal 
material contact, the I-V will be analyzed for 
two regions. The first region is the turn on 
voltage which will help determine the barrier 
height. High diode currents are the second 
region that is analyzed. In this region, contact 
resistance will be prominent and determined 
from the I-V curve. 

In addition to semiconductor type and 
meta l mater ia l contac t , the doping 
concentration is vital in describing the 
electrical characteristics of Schottky diodes. 
Due to thermionic emission, current is limited 
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Figure 1: Cross section of Schottky Diode

ΦB = Φm − χ (1)
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within Schottky diodes [3]. When the doping 
concentration is higher, the depletion width is 
smaller as seen by (2). As the depletion width 
shrinks, current through the diode changes 

from thermionic emission to field emission. 
Shown by (3)  it can be seen that as depletion 
width is smaller, current increases through the 
area of junction. 

As the doping concentration becomes large 
enough, field emission is the dominating 
current which is tunneling through the barrier. 
This can be determined by analyzing the 
change in I-V characteristics for various 
doping concentrations. A representation of 
how an increase in doping concentration can 
affect the I-V characteristic of the diode is 
shown in Figure 2. In order to determine the 
doping concentration and dopant type, the C-
V curves from Silvaco are going to be 
analyzed. Expressed in equation (4), the slope 
within the C-V curves is inversely 

proportional to the doping concentration. In 
order to determine dopant type such as a p or 
n type, the capacitance will either increase or 
decrease depending on the voltage applied 
being positive or negative. 

I.d Active Area 
    Lastly, the active area of the Schottky 

diode is another parameter that helps define 
electrical characteristics of the metal- 
semiconductor junction. The active area is 

directly proportional to the current produced 
within Schottky diodes as seen in (5) [4].  By 
changing the active area, the current produced 
will be changed for each potential applied. 
This parameter is determined at the end and is 
used to reach the desired current. 

In (5) A is the area of the junction, A* is  
the Richardson constant, T is the temperature 
in Kelvin,  is the Schottky barrier height, 
and n is the ideality factor. 

III. ANALYSIS AND METHODS 
Determining semiconductor parameters by 

hand is sometimes possible, but is often 
inaccurate or slow, and sometimes both. 
Additionally, solving for multiple parameters 
is often difficult given a limited amount of 
data to work with from any individual 
semiconductor device. The ideal method 
would be one which can extract many 
parameters at once from limited data, and is 
both fast and accurate. Recent advances in 
machine learning methods offer the ability to 
make accurate inferences about the properties 
of a subject (whether that subject be an 

ΦB
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Figure 2: Current versus voltage curve 
for different doping concentrations
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image, a video, a book, etc.) given limited 
information about that subject. Classic 
examples include algorithms to recognize 
faces in images, classify objects into different 
categories, and fill in missing areas of images, 
to name a few. 

Many of the tasks undertaken within 
machine learning employ some type of 
convolutional neural network. A neural 
network is a collection of layers of neurons, 
into which an input is passed, a nonlinear 
function is applied to those inputs, and the 
results are passed along through the layers 
until the end of the network. A convolutional 
neural network makes use of an operation 
called convolution, which involves sliding a 
square window of values (called a filter) over 
a matrix. A diagram of a convolutional neural 
network is shown in Figure 3. At each point, 
the values in the filter are multiplied with 
their corresponding values in the matrix, and 
these products are summed. The values inside 
the filter determine what kind of information 
is extracted. In an image, for example, there 
are filters which extract edges from an image 
or recognize corners, and more complex 
filters can recognize features including human 

faces or other complicated features. When 
training a convolutional neural network, one 
is trying to  determine what values to put in 
the filters, how many filters to use, and how 
many to apply at a time. Because the network 
has layers, and each layer operates on the 
output of the previous layer, neural networks 
are often able to detect meaningful 
information that is not easily discernible from 
the original data. It is because of this property 
of neural networks that this method was 
chosen for characterization. Convolutional 
neural networks are very good at extracting 
relationships between neighboring points, 
because all convolution operations are local 
to one small region at a time. The multi-layer 
perceptron (Figure 4) is good at assigning 
weights to features, i.e. determining which 
features are important and deciding how to 
combine them to form a final representation 
of the data. Training a neural network refers 
to the algorithm used to determine the values 
of the filters in the non-linear function 
parameters convolutional neural network. 

The process of training a network is 
complex, and will not be covered at great 
length here, but one important aspect of 
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Figure 3: Diagram of Convolutional Neural Network
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training will be discussed. First, the quantity 
and quality of available data must be high. If 
the model is complex, it will require hundreds 
or even thousands of pieces of training data. 
The model needed for this project is very 
complex, so many samples were necessary to 
train the network. 

Obtaining the data was straightforward. For 
each parameter to be changed, a range of 
acceptable values was decided. These values 
are shown in Table 1a. Once these ranges 
were determined, a Python script was used to 
perform simulations. The script would 
randomly choose a value for the substrate and 
contact material from the proper lists, and 
would sample from a uniform distribution 
over the correct ranges for that parameter. 

The script would write a Silvaco input file 
with the proper parameter values, mesh 
definitions, and voltage sweep. The range of 
the voltage sweep was from 0V to 10V, but a 
small variation was added in each run to 
ensure that the voltage values were not 
identical between runs, to account for similar 
inaccuracies in real-world measurements. 
Once the simulation had finished running, the 
python script would parse the output file for 
the IV and CV curves, and store them in 
a .csv file. The script performed roughly 
60,000 simulations with different parameter 
values. Unfortunately, some of those 
simulations did not converge, and some of the 
data files were corrupted. After post-
processing of the data, there were around 
40,000 sets of curves to use for our network 
where 80% of the data was used for training, 
and 20% was used for validation. 

 When passing the data to the 
convolutional neural network, it was 
“stacked” to form a two dimensional array. 
This was done so that the relationships 
between the different curves could be 
extracted. Before training, the data was 
normalized to fit on the range from 0 to 1. 
This was done because it generally results in 
faster training times and higher accuracy in 
the network. The network took in a two-
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Figure 4: Diagram of Fully Connected Neural Network

Table 1 - Parameter Ranges

Parameter Acceptable Range

X Scale Factor (from 12 um) .5 - 2

Y Scale Factor (from 5 um) .5 - 2

Contact Length (um) 1 - (12 * scale - 1 )

Log Guard Ring Doping Concentration 19 - 23 (non-log is 1e19 - 1e23 cm^-2)

Log Substrate Doping Concentration 18 - 22 (non-log is 1e18 - 1e22 cm^-2)
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dimensional array of data, performed 5 layers 
of convolutions, and had two fully connected 
layers. The stacking scheme for input to the 
network is shown in Figure 5. The training 
process took about two hours. 

III. RESULTS 
The network’s loss during training (a 

measurement of how far from correct it is) is 
plotted in Figure 6. The lower the loss, the 
more accurate the network. At first, the loss 
function was simply the mean squared error 
of all of the parameters, however, this 
function was not very informative for the 
network, and it was not able to obtain very 
high accuracy. Thus, the loss function was 

split into 4 parts. The loss became the 
classification error of the semiconductor 
material, the classification error of the contact 
material, the mean squared error of the 
parameters involving length (x scale factor, y 
scale factor, and contact length), and the 
mean squared error of the rest of the 
parameters. Each of these errors were given 
relative weights, so the network could factor 
in their relative importance to each other 
when updating its parameters. When the 
original loss function was used, the errors 
were as high as 50% for some of these 
parameters. However, this decreased 
drastically with the new loss function. The 
log losses during training are plotted below in 
Figure 6, showing how the accuracy of the 
different groups of parameters improved as 
training progressed. 
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[ V1 V2 V3 V4 … Vn ]

[ Ia1 Ia2 Ia3 Ia4 … Ian ]

[ V1 V2 V3 V4 … Vn ]

[ Ib1 Ib2 Ib3 Ib4 … Ibn ]

[ V1 V2 V3 V4 … Vn ]

[ C1 C2 C3 C4 … Cn ]

[ V1 V2 V3 V4 … Vn ]

Figure 5: Stacking scheme for data to 
pass into the network

Table 2 - Performance on Unseen Data

Parameter Average Error Average % Error (%)

X Scale Factor (from 12 um) 0.18204 16.89697%

Y Scale Factor (from 5 um) 0.15691 14.41294%

Contact Length (um) 2.45805 40.29127%

Log Guard Ring Doping Concentration 0.34675 1.62811%

Log Substrate Doping Concentration 0.34675 1.555%

Electron Affinity (eV) 0.03290 0.88138%

Work Function (eV) 0.04014 0.88045%

Figure 6: Log loss during training
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 Once training was completed, the 
network’s performance was evaluated on the 
test set (data it had never seen before) to try 
to infer the parameters used to create those 
curves. The performance of the network on 
data it had never seen before is shown in 
Table 2. 

As can be seen from the results, some of 
the parameters are able to be regressed very 
accurately, and some are not. The parameters 
involving length were not able to be found 
with high accuracy. However, all of the other 
parameters were.  

Most notably, the network was able to 
classify the substrate material and contact 
material correctly more than 99% of the time! 
Once trained, the model is able to run on a set 
of curves in a few milliseconds for fast, 
accurate classification of materials and most 
parameters. 

To further evaluate the performance of the 
network, manual calculations were done for a 
family of curves for which the parameters 
were known. The only parameter that was 
able to be extracted by hand was the n-type 
doping concentration. The value found was 
incorrect by a factor of over 100. However, 
the value obtained by the network was only 
off by a factor of three. Additionally, the 
parameters that were not able to be found by 
hand (not including length, height, and 
contact length) were found with error of less 
than 2%. 

The accuracy of the network was limited by 
the amount of training data available, and the 
amount of time it took to collect that data. If 
twice as many data points per curve were 
collected, the network would have likely been 
much more accurate. Therefore this method 
could be used by a semiconductor company 
for rapid characterization of its devices. A 
company would be able to train their version 
of this network on millions of IV and CV 

response curves, and would then have a 
quick, easy method of Schottky diode 
characterization. Additionally, the method 
could be expanded to apply to other 
semiconductor devices as well, including 
zener diodes and MOSFETs. 

IV. CONCLUSION 
Many scripts using Silvaco and Python 

were written and simulated to find distinct 
parameters that created various IV and CV 
response curves of a Schottky diode. 
Thousands of input decks were simulated and 
used, but several were unable to converge and 
had to be discarded. Further error checking 
was done by a cleanup script to ensure that 
the values that did converge were accurate 
and usable for the machine learning algorithm 
to learn from, and were realistic curves that 
could have been captured from a physical 
diode. 

The amount of t ime spent doing 
simulations was somewhat of an obstacle for 
this project. To obtain the data, 16 simulations 
were run in parallel for approximately 48 
hours total. The accuracy of the algorithm 
could be greatly increased if instead of 48 
hours of data generation, we could have 
simulated for two weeks, or even a month. 

All parameters tested and simulated could 
be manipulated further to better detect 
parameter changes and teach the algorithm 
more ways to pinpoint the correct parameter 
values. Additionally, more careful tuning of 
the loss function could possibly increase the 
accuracy further. 

Parameters that were not able to be 
accurately determined could be explored in 
future projects to improve the algorithm. 
Overall the project was a great success, and 
the team learned a lot about Schottky diodes, 
machine learning algorithms, as well as 
semiconductor parameter extraction.  
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