

EEE598 Topic: Physics-based Computer Vision
Final Report

Physics-based 3D Face Reconstruction

Eunsom Jeon, Hershel Millman, Mark Kapron

Abstract ​- 3D face reconstruction from 2D images is a
longstanding problem in computer vision and computer
graphics. Generating a 3D model from a single 2D image is an
ill-posed problem because the density of 3D spatial information
within an image is necessarily lower than the corresponding
information in a 3D model. 3D reconstruction methods using
Convolutional Neural Networks (CNN) have produced
impressive results for both volumetric and surface mesh
representations. Current models use feature-based learning
methods and loss functions. While features are often
informative, the performance of 3D reconstruction algorithms
may be augmented by taking a physics-based approach.

In this work, we present a physics-based 3D reconstruction
model using CNN to create accurate facial features and
geometry, considering illumination and shadow. We adopt a
mesh deformation model with a physically accurate loss
function.

Index Terms ​- 3D face reconstruction, physics based
reconstruction, mesh deformation, differentiable rendering

I. I​NTRODUCTION

3D face reconstruction is a hot topic in computer vision.
In recent decades, face alignment and geometric methods
have been used for detecting facial points to assist 3D face
recognition for applications ranging from immersive video
games to unlocking a cell phone. However, creating a 3D
model from a 2D input is an ill-posed problem. A single 2D
image contains information about relative sizes and colors
of features from a single perspective, but a minimum of two
viewpoints are required for robust analytical 3D
reconstruction. Unfortunately, a stereo system for this
purpose must be highly calibrated, and requires dedicated
hardware. Recent studies have aimed to increase availability
of 3D reconstruction by utilizing neural networks to predict
3D information given one or multiple 2D images.
Convolutional Neural Networks (CNNs) are common tools
for estimation of depth and 3D model parameters..

Current models for 3D reconstruction often use perceptual
or feature-based loss functions to predict depth, dense
aligned face coordinates, 3D Morphable Model (3DMM)
coefficients, or other 3D spatial information [​1​]. However,
previous methods of inference do not use any direct
physics-based models. Thus, even though the 3D output can
have a realistic geometry and structure, the output may have
other attributes that are not realistic. Some of these incorrect
attributes include erroneous texture and color, or unrealistic

shadows and reflections. Incorporating a physics-based
model should help to relieve some of these inaccuracies.

The goal of this work is to create a model which uses both
deep learning and the physics of light for inference. We
propose a pipeline of Convolutional Neural Networks
which takes in a single image of a face, and outputs
parameters of a 3D mesh.

Current techniques do not explicitly incorporate the
physics of light into the algorithms. In order to improve
upon these techniques, we introduce a method to reconstruct
3D face shape utilizing physically realistic differentiable
rendering techniques.

II. R​ELATED​ W​ORK

The problem of 3D reconstruction spans across a wide
range of applications that utilize different strategies to
obtain accurate outputs. Commonly, 3D reconstruction is
solved through the use of multi-view geometry (MVG) in
which several images are stitched together to form a mesh.
The main downfall of this approach is that it requires large
amounts of good quality input data to obtain a single output.
To get an accurate output there needs to be enough images
to observe around all occluded surfaces, such as under the
chin and around hair that covers the face [​2​]. Additionally,
MVG approaches are unable to interpret surfaces that are
not perfectly diffuse because any reflections or refractions
of light will change with the camera angle. Since these
approaches require inputs that restrict the potential
applications, current research has focused on neural
network-based approaches to accurately infer 3D geometry
from the inputs [​2​]. A discussion of some of these neural
network-based approaches follows in this section.

A. Volumetric representations
Many studies focus on volumetric approaches to generate

voxels to represent a 3D shape. These methods tend to adopt
other information such as facial landmarks as the primary
representation. The computational cost of these algorithms
is very high, because they require lots of calculation with
dense 3-dimensional structures. Additionally, usage of
volumetric data requires large amounts of memory and
storage space.

Jackson ​et al. used a CNN which they termed a
Volumetric Regression Network (VRN) which extracts
features from a 2D input and mapping them to a 3D

EEE598 Topic: Physics-based Computer Vision
Final Report

voxelization composed of roughly 7.4 million voxels [​3​].
The architecture of the VRN takes the form of two
hourglass networks that work to establish a spatial
correspondence between the input and output. The network
calculates the 3D spatial predictions at the voxel level,
which produced outputs that were robust to facial poses,
expressions and occlusions. While this network has been
shown to produce good results for 3D face reconstruction, it
still lacks the crucial facial characteristics of texture and
color. Additionally, the model creates a lot of useless
information. The voxels behind the surface of the face do
not serve much of a purpose, if any at all, because no
information is able to be inferred about them, due to the
opacity of the face. In our network, we work to ensure that
all produced information is useful in order to minimize
computational waste.

B. Surface-based representations
Surface-based representations such as meshes and point

clouds can be used to get a detailed 3D shape. This
approach is advantageous in memory efficiency because it
does not have to store dense high-dimensional information.
However, it is not easy to fit into deep learning architectures
and several loss functions are often required to obtain
accurate results.

The Pixel2Mesh paper uses a cascaded mesh deformation
network as an end to end deep learning framework for 3D
reconstruction [4]. The method involves beginning with an
ellipsoid mesh and deforming it to approximate a 3D model
of the input known as a graph-based convolution network
(GCN). Next, the ellipsoid is deformed through a series of
mesh deformation blocks that use graph-based convolution
to extract features and update the mesh. After each
deformation block there is a graph unpooling layer in which
the number of vertices is increased to improve the resolution
of the results. The graph unpooling layers allow for a
coarse-to-fine approach, where the network is able to learn
coarse shape representation, and fill in finer information
later on in the pipeline. The loss function chosen for the
GCN includes terms that account for chamfer distance,
surface normal, laplacian regularization and edge length to
ensure the shape of the ellipsoid converges to the desired
geometry. Unfortunately, the Pixel2Mesh method does not
provide a solution for texture and color of the meshes either
[4].

III. P​ROPOSED​ M​ETHOD

The overall goal is to map an image of a face to a realistic
3D mesh of the face. In order to achieve this mapping, the
pipeline must be able to complete a few key tasks. It must
be able to extract features and keypoints from an image of a
face, map those keypoints and features into three
dimensions, and synthesize a mesh to approximate the facial
structure.

A. Preliminary Method
As a preliminary approach, we implemented methods of

extracting face landmarks and segments from a 2D image,

which can assist 3D face reconstruction, to explore effective
methods.

1) Face Keypoint based Method

We implement a 3D face generation based on the key
points which are extracted from a 2D image. First, the face
area is detected by HOG features and a linear SVM
classifier and face landmarks are detected using the face
ROI. Face area and landmark detection is implemented with
Dlib. After getting 68 landmarks from an image, shape
fitting is implemented by using PCA shape coefficients and
linear shape regression [5]. Also, facial components are
used to calculate facial poses for reconstruction processing
with Surrey Face Model. Surrey Face Model is used as a
dummy shape of the model and it has about 3k vertices.
Figure 1 shows a sample process of 3D face modeling based
on the facial landmarks.

Fig. 1. Flow chart of 3D face modeling based on facial keypoints.

2) Face Segmentation

Fig. 2. U-net architecture for facial segmentation

Current methods of 3D reconstruction provide only an

output for the geometry of the 2D input image. The goal of
this project extends past obtaining accurate facial geometry
and to forming a realistic face in terms of texture and color.
The main obstacle that prevents a simple solution to this
problem is that a face contains several areas such as the
eyes, lips, and hair that are significantly different and
interact with light differently, and also require different

EEE598 Topic: Physics-based Computer Vision
Final Report

levels of mesh vertex concentration. For example, the
accurate representation of an eye and eyelid will require
more mesh polygons per unit area than a forehead. To
differentiate between different facial regions, a U-net
architecture [6], shown in Figure 2, is used for
segmentation. The specific facial features can be used to
define the area of each facial element and to extract texture
from the original 2D image. This segmentation technique
appears promising.

B. Physics-based Face Reconstruction Method
In preparation for processing faces, a preliminary step is

taken to provide a simpler example to ensure the feasibility
of the method as well as to become familiar with
PyTorch3D [7].

A Mesh deformation network was built and a
physics-based loss function was implemented using a
differentiable renderer from PyTorch3D. Also, the network
uses facial segments which are extracted from U-Net to
focus on facial area and to consider physical effects such as
background area, illumination, and shadow. The framework
of our proposed method is shown in Figure 3.

Fig.3. The framework of our proposed method for 3D face generation.

C. Mesh Deformation

A mesh deformation network is created using PyTorch.
The goal of the network is to take in an image and output
information about how to move each vertex to create the
proper mesh structure. Wang ​et al. utilizes a cascaded mesh
deformation network that provides an end to end deep
learning framework [4]. The network deforms an ellipsoid,
while learning where to put new vertices, and learning the
relationship between faces. The new vertices are created in
graph unpooling layers, which uses an edge based approach
to ensure regular vertex distribution. Additionally, they
utilize a coarse-to-fine method for mesh deformation [4].
However, the structure of the method is complicated and
requires many different parameters for loss function and
procedures for controlling the movement of vertices.

In order to simplify the architecture, our network will not
be concerned with regressing the relationships between
faces. The number of faces and their respective vertex
connections will remain constant with reference to the initial

mesh. Thus, the deformation network only needs to learn
how to properly offset the positions of the vertices.

Four different loss functions are commonly used in
mesh-based learning [4,7]. Chamfer loss, the formula for
which is shown below in (1), takes into account the location
error for every vertex in the mesh.

 (1) p pl c = ∑

p
minq | − q|22 + ∑

q
minp| − q|22

The normal loss, (2), measures the difference between the

surface normal at each vertex in the produced mesh with the
corresponding normal in the ground truth mesh.

 ​(2) < , s.t.k (p)l n = ∑

p
∑

q=argmin (p−q)q | |22

|
| p − k nq >|

|
2

2 ∈ N

In (2), p is a vertex in the predicted mesh, q is the closest

vertex to p in the ground truth mesh, k is the neighboring
pixel of p, and n​q is the observed surface normal from the
ground truth. ​This term allows the observed surface normals
to converge to the desired geometry.

Next, two regularization terms are introduced to avoid the
loss function converging to a local minimum. Laplacian
regularization prevents vertices from moving too freely and
encourages neighboring vertices to have similar movements.

 (3) l lap = ∑

p
δ||

′
p − δp|

|
2

2

where​ and are the laplacian coordinate of a vertex.δ′
p δp

Edge length regularization penalizes flying vertices that
cause long edges.

 (4) l loc = ∑

p
∑

k∈N (p)
p| − k|22

where p is a vertex in the predicted mesh and k is the
neighboring pixel of p.

The over loss function is a linear combination of each of
the four losses, shown below.

 (5) l l l l all = lc + λ1 n + λ2 lap + λ3 loc
where , , and are chosen hyperparameters.λ1 λ2 λ3

This network architecture provides a computationally
efficient method of mesh generation that will serve as a
foundation for the experiments of this project. However,
calculating all of this loss requires ground-truth knowledge
of surface normals.

To explore Mesh deformation, we created two different
networks, BabyMeshNet and MeshNet. BabyMeshNet was
used for testing the effects of convolutional layers and the
ability for a network to perform spatial regression of vertex
coordinates. BabyMeshNet takes in a 128x128 RGB image,
passis it through the convolutional layers, and outputs a
2562x3 tensor, which correspond to the xyz coordinates of
the 2562 vertices in the mesh. Then, using PyTorch3D, the
image is rendered, and the loss function is the mean squared
error between the rendered image and the original input
image. This loss function has the advantage that it does not
require ground-truth knowledge of the mesh structure.

EEE598 Topic: Physics-based Computer Vision
Final Report

MeshNet was built with a structure similar to
BabyMeshNet. Initially, MeshNet was trained with just
mean squared error as well. However, no promising results
were able to be achieved, so the loss functions had to be
altered. The alteration of the loss function is further
discussed in section V. Also, the biggest differences
between MeshNet and BabyMeshNet are that the input to
MeshNet consists of both the image and the segmentation
map, and the output of MeshNet is a 2x2113x3 tensor.
Similar to BabyMeshNet, one of these tensors consists of
the xyz coordinates of the vertices, but the other tensor
consists of the corresponding rgb color of that vertex.

D. Differentiable Rendering

A component of the loss function used to train MeshNet is
a physics-based mean squared error. The output of MeshNet
is used to deform the reference mesh to its new shape. This
new shape is then rendered using the differentiable
rendering pipeline of PyTorch3D [7]. Differentiable
rendering is a relatively new research focus in computer
vision that provides a method for use of rendering in deep
learning applications. The required rendering pipeline in
many approaches has many complicated and specific
components that require a GPU. The PyTorch3D
differentiable renderer offers a modular framework with
compatibility with PyTorch and CUDA. This framework
has been used to render the output of BabyMeshNet to
produce an image similar to the input image, and is used for
MeshNet as well.

IV. E​XPERIMENTS

In this Section, the datasets used for our methods and
results of preliminary test and intermediate results are
explained.

A. Dataset Description
For the preliminary test, for face keypoint based method,

we used Surrey Face Model (SFM) [8] which includes 3448
vertices and Basel Face Model (BFM) [9] which includes
more than 50k vertices to implement keypoint based face
modeling and segmentation. SFM has vertex information
including 3 different coordinates within the facial area. And
BFM has vertices including head and neck. The datasets
used for training the face segmentation network are
FASSEG [10] and HELEN [11].

B. Preliminary Result
1) Face Keypoint based Method

As the first experiments, we implemented a 3D face
generation based on the key points extracted from a 2D
image. As shown in Figure 4(c) and (d), 68 keypoints and
estimated vertices were generated and its 3D face was
created. However, these results were not achieved with deep
learning, so no further pursuit of this technique was made.

Fig. 4. Input and results of 3D generation based on keypoint: (a) input
image; (b) Surrey face model; (c) result of detected landmarks and
estimated vertices; (d) result of the reconstructed 3D face

2) Face Segmentation

Using a U-net based architecture [6], the segmentations in
Figure 5 were achieved after approximately 24 hours of
training. On the left are the input images, in the middle are
the learned segmentations, and on the right are the ground
truth segmentations. As can be seen, the segmentation is
very robust and is effective even in cases of very heavy
occlusion.
Fig. 5. Results of facial segmentation with U-net architecture: (a) input
image; (b) ground truth; (c) results of facial segmentation

EEE598 Topic: Physics-based Computer Vision
Final Report

C. Physics-based Face Reconstruction Result
1) Mesh Deformation based on BabyMeshNet

To prototype mesh generation with BabyMeshNet, we
used the teapot from the PyTorch3D tutorial. BabyMeshNet
uses only 3 convolution layers with mean square error loss
function. The image of the teapot is shown in Figure 6.
BabyMeshNet takes in the image, and outputs a 7686x3
tensor, where 7686 is the number of vertices in the reference
mesh and the three numbers in each row correspond to the
x, y, and z components of the translation of each vertex.

BabyMeshNet uses 3 convolutional layers and is not set up
with any U-net or ResNet enhancements, so the feature
extraction is not highly robust at this time. Even so, enough
features are able to be extracted to create a promising result,
as discussed in the Section 3.

Fig. 6. Input image for testing with MeshNet.

2) Differentiable Rendering

A major problem that persisted for decades is that most
renderers operate with a randomized non-differentiable
method. In most cases, this does not pose a problem, but for
deep learning, the non-differentiability meant that a renderer
could not be used as a loss function. This severely
handicapped deep learning in the area of 3D reconstruction.
However, recently multiple packages capable of
differentiable rendering have come under development,
most notably Mitsuba2 [12] and PyTorch3D [7]. Mitsuba2
was explored for this project, but due to it still being in early
development, it is not able to be utilized for our use case.
PyTorch3D is slightly less realistic, but has an easy-to-use
API, and integrates seamlessly with PyTorch.

Using the differentiable renderer from PyTorch3D [7], an
image of the output mesh is created. The output of the
renderer is an image that is the same size as the original.
From this point, a loss function is calculated. At this point,
the only loss function in use is mean squared error. There is
no fancy feature-based loss or any advanced 3D mesh
property or geometry-based loss.

As shown in Figure 7, there is an initial mesh,
intermediate mesh, and the best mesh that was found.

Fig. 7. Results of differentiable rendering with BabyMeshNet: (a) initial
mesh; (b) intermediate result of mesh; (c) the best result of mesh

As can be seen in Figure 7, the deformation is able to be
somewhat accurately learned merely from an image-based
loss function. The top of the teapot can clearly be seen, and
the spout and handle are beginning to emerge.

Given that this example is only run on one object, it is
likely that the accuracy will increase tremendously when
thousands of images are used for training.

2) Mesh Deformation by MeshNet

One the potential of BabyMeshNet was demonstrated,
MeshNet was created. MeshNet consists of four
convolutional layers and 2 fully connected layers, one for
vertex position regression, and one for vertex color
estimation. The reference mesh was a sphere. The vertices
in this mesh were offset by the values output by MeshNet
and the vertex colors were updated. The output image is
then generated by using PyTorch3D’s differentiable
rendering pipeline. The structures of BabyMeshNet and
MeshNet are shown in Appendix A and B respectively.
MeshNet takes in the original image concatenated with the
segmentation map (effectively 6 channels). At first, the
network was trained with only mean squared error loss
between the original image and the output image. However,
this led to very blurry images that only minimally resembled
a face. One such example is shown below in Figure 8.

Fig. 8. Original, terrible results

The vertices were flying all over the place, and the

coloration was almost completely random. In order to
mitigate this, we experimented with different loss functions.
Unfortunately, the most powerful mesh-based loss function,
Chamfer Loss, seemed like it would not be usable, because
the ground truth mesh is not known. However, a hack was
found. The reference mesh was changed to be a hemisphere
instead of a sphere to allow for more informed vertex
regression (the optimizer would no longer waste time trying
to regress hidden vertices because they would now all be
visible). Additionally, a chamfer loss was added between
the final mesh and the reference hemisphere. Although the
hemisphere is not the goal mesh, it is close enough to the

EEE598 Topic: Physics-based Computer Vision
Final Report

shape of a face that with a low weight, this loss could serve
as a regularization term to prevent runaway vertices.

Even with this new loss and hemisphere reference mesh,
the results were far from acceptable. At this point, the only
loss was MSE with the original image, and Chamfer. To
make the MSE loss more informative, the segmentation
image was used to create a mask which got rid of the
background in the original image and got rid of those same
pixels in the rendered output image. Then, to improve
training further, laplacian regularization loss, normal
consistency loss, and edge length loss were added to make
sure the surface was smooth and had relatively small
triangles. Even with these loss functions, the network was
still not learning very well. The final modification added
was a VGG loss using a pre-trained VGG19 network. This
was used to ensure feature consistency between the output
image and the original image. The final loss function is
below in (5).

 (5) .6l 5l .01l .1ll all = 0.5lmse + 0 V GG + 1 c + le + 0 n + 0 lap

Where l​mse is the mean squared error, l​VGG is the vgg loss,

l​c is the Chamfer loss, l​e is the edge loss, l​n is the normal
consistency loss, and l​lap​ is the laplacian regularization loss.

Even though all these loss functions were added, the
result did not look realistic, although it did improve
significantly. Some results are shown in Figure 9. as can be
seen from the results, facial features are able to be found
fairly accurately. These results are from 12 epochs of
training. With more training, the accuracy would be further
increased.

We used 3x64x64 images with batch size 1 for training
and testing. The batch size limitation is due to a bug in
PyTorch3d, which would cause the program to crash if a
batch size larger than 1 was used. If larger batch sizes and
higher size of the images are used, more accurate results
will be obtained.

V. C​ONCLUSION

We implemented various methods for 3D face generation
including face landmark extraction and face segmentation.
Also, we presented mesh deformation and differentiable
rendering with BabyMeshNet and MeshNet. As shown in
experimental results, the 3D face model was created from
2D images. We used facial segments which were extracted
by CNN. To get a 3D facial model, BabyMeshNet was
created as an initial simple test. In order to improve the
accuracy and represent more detailed 3D results with
physical effects, we created a network, MeshNet, and the
network was used with physics-based loss functions. As
shown in the experimental results, 3D face was generated
from a 2D image, even though the size of the input image is
much small to represent details.

In order to improve our network for 3D generation, an
image whose size is higher than 64x64 can be used for
training and testing. Also, more complicated networks such
as residual networks with larger parameters can be used to
get more features. Additionally, graph convolutional

networks could be explored, which may be much more
efficient at learning relationships between vertices.

Fig. 9. Final results. Original Image, Rendered image, rendered image with
higher contrast.

EEE598 Topic: Physics-based Computer Vision
Final Report

 R​EFERENCES
[1] V. Blanz and T. Vetter, “Face recognition based on fitting a 3D

morphable model,” ​IEEE Trans. Pattern Anal. Mach. Intell. ​25(9),
pp. 1063–1074, 2003.

[2] X. Han, H. Laga, and M. Bennamoun, “Image-based 3D Object
Reconstruction: State-of-the-Art and Trends in the Deep Learning
Era,” ​IEEE Trans. Pattern Anal. Mach. Intell. pp.1, 20 November
2019.

[3] A.S. Jackson, A. Bulat, V. Argyriou, and G. Tzimiropoulos, “Large
pose 3D face reconstruction from a single image via direct volumetric
CNN regression,” in ​IEEE International Conference on Computer
Vision​, Honolulu, HI, USA, 21-26 July 2017, pp. 1031-1039.

[4] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.G. Jiang,
“Pixel2Mesh: Generating 3d mesh models from single rgb images,”
In ​European Conference on Computer Vision​, Munich, Germany,
8-18 September 2018, pp. 52-67.

[5] Y. ​Hu, D. Jiang, S. Yan, and L. Zhang, “Automatic 3D reconstruction
for face recognition,” In ​IEEE International Conference on
Automatic Face and Gesture Recognition​, Seoul, Korea, 17-19 May
2004, pp. 843-848.

[6] O. ​Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” In ​International
Conference on Medical image computing and computer-assisted
intervention​, Munich, Germany, 5-9 October 2015, pp. 234-241.

[7] PyTorch3D A library for deep learning with 3D data. Available
online: ​https://pytorch3d.or​g/ (accessed on 10 April 2020).

[8] P. ​Huber, G. Hu, R. Tena, P. Mortazavian, P. Koppen, W.J.
Christmas, M. Ratsch, and J. Kittler, “A Multiresolution 3D
Morphable Face Model and Fitting Framework,” In International
Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications​, Rome, Italy, 27-29 February
2016.

[9] T. ​Gerig, A. Morel-Forster, C. Blumer, B. Egger, M. ​Lüthi, S.
Schönborn, and T. Vetter, “Morphable Face Models - An Open
Framework​,” ​In IEEE International Conference on Automatic Face &
Gesture Recognition​, Xian, China, 15-18 May 2018, pp. 75-82.

[10] S. ​Benini, K. Khan, R. Leonardi R, M. Mauro, and P. Migliorati,
“FASSEG: A FAce semantic SEGmentation repository for face image
analysis,” ​Data in brief.​ 24, June 2019.

[11] V. ​Le, J. Brandt, Z. Lin, L. Bourdev, and T.S. Huang, “Interactive
facial feature localization,” In ​European Conference on Computer
Vision​, Berlin, Heidelberg, October 2012, pp. 679-692.

[12] Mitsuba 2 Physics based renderer. Available online:
https://www.mitsuba-renderer.org/​ (accessed on 10 April 2020).

https://pytorch3d.org/
https://www.mitsuba-renderer.org/

EEE598 Topic: Physics-based Computer Vision
Final Report

Appendix A -- BabyMeshNet Model Summary

 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 8, 254, 254] 224
 Conv2d-2 [-1, 12, 125, 125] 876
 Conv2d-3 [-1, 16, 60, 60] 1,744
 Conv2d-4 [-1, 32, 28, 28] 4,640
 Linear-5 [-1, 7686] 48,214,278
 SmallMeshNet-6 [-1, 2562, 3] 0
==
Total params: 48,221,762
Trainable params: 48,221,762
Non-trainable params: 0

Appendix B -- MeshNet Model Summary

--
 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 16, 126, 126] 880
 Conv2d-2 [-1, 32, 61, 61] 4,640
 Conv2d-3 [-1, 64, 28, 28] 18,496
 Conv2d-4 [-1, 128, 12, 12] 73,856
 Linear-5 [-1, 6339] 29,216,451
 Linear-6 [-1, 6339] 29,216,451
 MeshNet-7 [[-1, 2113, 3], [-1, 2113, 3]] 0
==
Total params: 58,530,774
Trainable params: 58,530,774
Non-trainable params: 0
--

