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Abstract ​- 3D face reconstruction from 2D images is a          
longstanding problem in computer vision and computer       
graphics. Generating a 3D model from a single 2D image is an            
ill-posed problem because the density of 3D spatial information         
within an image is necessarily lower than the corresponding         
information in a 3D model. 3D reconstruction methods using         
Convolutional Neural Networks (CNN) have produced      
impressive results for both volumetric and surface mesh        
representations. Current models use feature-based learning      
methods and loss functions. While features are often        
informative, the performance of 3D reconstruction algorithms       
may be augmented by taking a physics-based approach. 

In this work, we present a physics-based 3D reconstruction          
model using CNN to create accurate facial features and         
geometry, considering illumination and shadow. We adopt a        
mesh deformation model with a physically accurate loss        
function. 
 

Index Terms ​- 3D face reconstruction, physics based         
reconstruction, mesh deformation, differentiable rendering 
 

I. I​NTRODUCTION 

3D face reconstruction is a hot topic in computer vision.          
In recent decades, face alignment and geometric methods        
have been used for detecting facial points to assist 3D face           
recognition for applications ranging from immersive video       
games to unlocking a cell phone. However, creating a 3D          
model from a 2D input is an ill-posed problem. A single 2D            
image contains information about relative sizes and colors        
of features from a single perspective, but a minimum of two           
viewpoints are required for robust analytical 3D       
reconstruction. Unfortunately, a stereo system for this       
purpose must be highly calibrated, and requires dedicated        
hardware. Recent studies have aimed to increase availability        
of 3D reconstruction by utilizing neural networks to predict         
3D information given one or multiple 2D images.        
Convolutional Neural Networks (CNNs) are common tools       
for estimation of depth and 3D model parameters.. 

Current models for 3D reconstruction often use perceptual        
or feature-based loss functions to predict depth, dense        
aligned face coordinates, 3D Morphable Model (3DMM)       
coefficients, or other 3D spatial information [​1​]. However,        
previous methods of inference do not use any direct         
physics-based models. Thus, even though the 3D output can         
have a realistic geometry and structure, the output may have          
other attributes that are not realistic. Some of these incorrect          
attributes include erroneous texture and color, or unrealistic        

shadows and reflections. Incorporating a physics-based      
model should help to relieve some of these inaccuracies. 

The goal of this work is to create a model which uses both             
deep learning and the physics of light for inference. We          
propose a pipeline of Convolutional Neural Networks       
which takes in a single image of a face, and outputs           
parameters of a 3D mesh.  

Current techniques do not explicitly incorporate the       
physics of light into the algorithms. In order to improve          
upon these techniques, we introduce a method to reconstruct         
3D face shape utilizing physically realistic differentiable       
rendering techniques. 

 

II. R​ELATED​ W​ORK 

The problem of 3D reconstruction spans across a wide         
range of applications that utilize different strategies to        
obtain accurate outputs. Commonly, 3D reconstruction is       
solved through the use of multi-view geometry (MVG) in         
which several images are stitched together to form a mesh.          
The main downfall of this approach is that it requires large           
amounts of good quality input data to obtain a single output.           
To get an accurate output there needs to be enough images           
to observe around all occluded surfaces, such as under the          
chin and around hair that covers the face [​2​]. Additionally,          
MVG approaches are unable to interpret surfaces that are         
not perfectly diffuse because any reflections or refractions        
of light will change with the camera angle. Since these          
approaches require inputs that restrict the potential       
applications, current research has focused on neural       
network-based approaches to accurately infer 3D geometry       
from the inputs [​2​]. A discussion of some of these neural           
network-based approaches follows in this section. 

A. Volumetric representations 
Many studies focus on volumetric approaches to generate        

voxels to represent a 3D shape. These methods tend to adopt           
other information such as facial landmarks as the primary         
representation. The computational cost of these algorithms       
is very high, because they require lots of calculation with          
dense 3-dimensional structures. Additionally, usage of      
volumetric data requires large amounts of memory and        
storage space. 

Jackson ​et al. used a CNN which they termed a          
Volumetric Regression Network (VRN) which extracts      
features from a 2D input and mapping them to a 3D           
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voxelization composed of roughly 7.4 million voxels [​3​].        
The architecture of the VRN takes the form of two          
hourglass networks that work to establish a spatial        
correspondence between the input and output. The network        
calculates the 3D spatial predictions at the voxel level,         
which produced outputs that were robust to facial poses,         
expressions and occlusions. While this network has been        
shown to produce good results for 3D face reconstruction, it          
still lacks the crucial facial characteristics of texture and         
color. Additionally, the model creates a lot of useless         
information. The voxels behind the surface of the face do          
not serve much of a purpose, if any at all, because no            
information is able to be inferred about them, due to the           
opacity of the face. In our network, we work to ensure that            
all produced information is useful in order to minimize         
computational waste. 

B. Surface-based representations 
Surface-based representations such as meshes and point       

clouds can be used to get a detailed 3D shape. This           
approach is advantageous in memory efficiency because it        
does not have to store dense high-dimensional information.        
However, it is not easy to fit into deep learning architectures           
and several loss functions are often required to obtain         
accurate results. 

The Pixel2Mesh paper uses a cascaded mesh deformation        
network as an end to end deep learning framework for 3D           
reconstruction [4]. The method involves beginning with an        
ellipsoid mesh and deforming it to approximate a 3D model          
of the input known as a graph-based convolution network         
(GCN). Next, the ellipsoid is deformed through a series of          
mesh deformation blocks that use graph-based convolution       
to extract features and update the mesh. After each         
deformation block there is a graph unpooling layer in which          
the number of vertices is increased to improve the resolution          
of the results. The graph unpooling layers allow for a          
coarse-to-fine approach, where the network is able to learn         
coarse shape representation, and fill in finer information        
later on in the pipeline. The loss function chosen for the           
GCN includes terms that account for chamfer distance,        
surface normal, laplacian regularization and edge length to        
ensure the shape of the ellipsoid converges to the desired          
geometry. Unfortunately, the Pixel2Mesh method does not       
provide a solution for texture and color of the meshes either           
[4]. 

 

III. P​ROPOSED​ M​ETHOD 

The overall goal is to map an image of a face to a realistic              
3D mesh of the face. In order to achieve this mapping, the            
pipeline must be able to complete a few key tasks. It must            
be able to extract features and keypoints from an image of a            
face, map those keypoints and features into three        
dimensions, and synthesize a mesh to approximate the facial         
structure. 

A. Preliminary Method 
As a preliminary approach, we implemented methods of        

extracting face landmarks and segments from a 2D image,         

which can assist 3D face reconstruction, to explore effective         
methods. 

 
1) Face Keypoint based Method 

We implement a 3D face generation based on the key          
points which are extracted from a 2D image. First, the face           
area is detected by HOG features and a linear SVM          
classifier and face landmarks are detected using the face         
ROI. Face area and landmark detection is implemented with         
Dlib. After getting 68 landmarks from an image, shape         
fitting is implemented by using PCA shape coefficients and         
linear shape regression [5]. Also, facial components are        
used to calculate facial poses for reconstruction processing        
with Surrey Face Model. Surrey Face Model is used as a           
dummy shape of the model and it has about 3k vertices.           
Figure 1 shows a sample process of 3D face modeling based           
on the facial landmarks. 
 

Fig. 1.  Flow chart of 3D face modeling based on facial keypoints. 
 
2) Face Segmentation 
 

 
Fig. 2.  U-net architecture for facial segmentation 

 
Current methods of 3D reconstruction provide only an        

output for the geometry of the 2D input image. The goal of            
this project extends past obtaining accurate facial geometry        
and to forming a realistic face in terms of texture and color.            
The main obstacle that prevents a simple solution to this          
problem is that a face contains several areas such as the           
eyes, lips, and hair that are significantly different and         
interact with light differently, and also require different        
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levels of mesh vertex concentration. For example, the        
accurate representation of an eye and eyelid will require         
more mesh polygons per unit area than a forehead. To          
differentiate between different facial regions, a U-net       
architecture [6], shown in Figure 2, is used for         
segmentation. The specific facial features can be used to         
define the area of each facial element and to extract texture           
from the original 2D image. This segmentation technique        
appears promising. 

 

B. Physics-based Face Reconstruction Method 
In preparation for processing faces, a preliminary step is         

taken to provide a simpler example to ensure the feasibility          
of the method as well as to become familiar with          
PyTorch3D [7]. 

A Mesh deformation network was built and a        
physics-based loss function was implemented using a       
differentiable renderer from PyTorch3D. Also, the network       
uses facial segments which are extracted from U-Net to         
focus on facial area and to consider physical effects such as           
background area, illumination, and shadow. The framework       
of our proposed method is shown in Figure 3. 

 

 
Fig.3.  The framework of our proposed method for 3D face generation. 
 
C. Mesh Deformation 

A mesh deformation network is created using PyTorch.        
The goal of the network is to take in an image and output             
information about how to move each vertex to create the          
proper mesh structure. Wang ​et al. utilizes a cascaded mesh          
deformation network that provides an end to end deep         
learning framework [4]. The network deforms an ellipsoid,        
while learning where to put new vertices, and learning the          
relationship between faces. The new vertices are created in         
graph unpooling layers, which uses an edge based approach         
to ensure regular vertex distribution. Additionally, they       
utilize a coarse-to-fine method for mesh deformation [4].        
However, the structure of the method is complicated and         
requires many different parameters for loss function and        
procedures for controlling the movement of vertices. 

In order to simplify the architecture, our network will not          
be concerned with regressing the relationships between       
faces. The number of faces and their respective vertex         
connections will remain constant with reference to the initial         

mesh. Thus, the deformation network only needs to learn         
how to properly offset the positions of the vertices. 

Four different loss functions are commonly used in        
mesh-based learning [4,7]. Chamfer loss, the formula for        
which is shown below in (1), takes into account the location           
error for every vertex in the mesh. 

             (1)  p  pl c = ∑
 

p
minq | − q|22 + ∑

 

q
minp| − q|22  

 
The normal loss, (2), measures the difference between the         

surface normal at each vertex in the produced mesh with the           
corresponding normal in the ground truth mesh. 

   ​(2)  < , s.t.k (p)l n = ∑
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In (2), p is a vertex in the predicted mesh, q is the closest               

vertex to p in the ground truth mesh, k is the neighboring            
pixel of p, and n​q is the observed surface normal from the            
ground truth. ​This term allows the observed surface normals         
to converge to the desired geometry. 

Next, two regularization terms are introduced to avoid the          
loss function converging to a local minimum. Laplacian        
regularization prevents vertices from moving too freely and        
encourages neighboring vertices to have similar movements. 

                          (3)  l lap = ∑
 

p
δ||

′
p − δp|

|
2

2  

where​  and  are the laplacian coordinate of a vertex.δ′
p δp   

Edge length regularization penalizes flying vertices that       
cause long edges. 

                      (4)  l loc = ∑
 

p
∑
 

k∈N (p)
p| − k|22  

 
where p is a vertex in the predicted mesh and k is the             
neighboring pixel of p. 

The over loss function is a linear combination of each of           
the four losses, shown below. 

               (5)  l l l   l all = lc + λ1 n + λ2 lap + λ3 loc  
where , , and are chosen hyperparameters.λ1 λ2 λ3  

This network architecture provides a computationally      
efficient method of mesh generation that will serve as a          
foundation for the experiments of this project. However,        
calculating all of this loss requires ground-truth knowledge        
of surface normals.  

To explore Mesh deformation, we created two different        
networks, BabyMeshNet and MeshNet. BabyMeshNet was      
used for testing the effects of convolutional layers and the          
ability for a network to perform spatial regression of vertex          
coordinates. BabyMeshNet takes in a 128x128 RGB image,        
passis it through the convolutional layers, and outputs a         
2562x3 tensor, which correspond to the xyz coordinates of         
the 2562 vertices in the mesh. Then, using PyTorch3D, the          
image is rendered, and the loss function is the mean squared           
error between the rendered image and the original input         
image. This loss function has the advantage that it does not           
require ground-truth knowledge of the mesh structure.  
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MeshNet was built with a structure similar to        
BabyMeshNet. Initially, MeshNet was trained with just       
mean squared error as well. However, no promising results         
were able to be achieved, so the loss functions had to be            
altered. The alteration of the loss function is further         
discussed in section V. Also, the biggest differences        
between MeshNet and BabyMeshNet are that the input to         
MeshNet consists of both the image and the segmentation         
map, and the output of MeshNet is a 2x2113x3 tensor.          
Similar to BabyMeshNet, one of these tensors consists of         
the xyz coordinates of the vertices, but the other tensor          
consists of the corresponding rgb color of that vertex. 

 
D. Differentiable Rendering 

A component of the loss function used to train MeshNet is           
a physics-based mean squared error. The output of MeshNet         
is used to deform the reference mesh to its new shape. This            
new shape is then rendered using the differentiable        
rendering pipeline of PyTorch3D [7]. Differentiable      
rendering is a relatively new research focus in computer         
vision that provides a method for use of rendering in deep           
learning applications. The required rendering pipeline in       
many approaches has many complicated and specific       
components that require a GPU. The PyTorch3D       
differentiable renderer offers a modular framework with       
compatibility with PyTorch and CUDA. This framework       
has been used to render the output of BabyMeshNet to          
produce an image similar to the input image, and is used for            
MeshNet as well. 

 

IV. E​XPERIMENTS 

In this Section, the datasets used for our methods and          
results of preliminary test and intermediate results are        
explained. 

A. Dataset Description 
For the preliminary test, for face keypoint based method,         

we used Surrey Face Model (SFM) [8] which includes 3448          
vertices and Basel Face Model (BFM) [9] which includes         
more than 50k vertices to implement keypoint based face         
modeling and segmentation. SFM has vertex information       
including 3 different coordinates within the facial area. And         
BFM has vertices including head and neck. The datasets         
used for training the face segmentation network are        
FASSEG [10] and HELEN [11]. 

B. Preliminary Result 
1)    Face Keypoint based Method 

As the first experiments, we implemented a 3D face         
generation based on the key points extracted from a 2D          
image. As shown in Figure 4(c) and (d), 68 keypoints and           
estimated vertices were generated and its 3D face was         
created. However, these results were not achieved with deep         
learning, so no further pursuit of this technique was made. 

 
Fig. 4. Input and results of 3D generation based on keypoint: (a) input             
image; (b) Surrey face model; (c) result of detected landmarks and           
estimated vertices; (d) result of the reconstructed 3D face 
 
2)    Face Segmentation 

Using a U-net based architecture [6], the segmentations in         
Figure 5 were achieved after approximately 24 hours of         
training. On the left are the input images, in the middle are            
the learned segmentations, and on the right are the ground          
truth segmentations. As can be seen, the segmentation is         
very robust and is effective even in cases of very heavy           
occlusion. 
Fig. 5. Results of facial segmentation with U-net architecture: (a) input           
image; (b) ground truth; (c) results of facial segmentation 
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C. Physics-based Face Reconstruction Result 
1)    Mesh Deformation based on BabyMeshNet 

To prototype mesh generation with BabyMeshNet, we       
used the teapot from the PyTorch3D tutorial. BabyMeshNet        
uses only 3 convolution layers with mean square error loss          
function. The image of the teapot is shown in Figure 6.           
BabyMeshNet takes in the image, and outputs a 7686x3         
tensor, where 7686 is the number of vertices in the reference           
mesh and the three numbers in each row correspond to the           
x, y, and z components of the translation of each vertex.  

BabyMeshNet uses 3 convolutional layers and is not set up           
with any U-net or ResNet enhancements, so the feature         
extraction is not highly robust at this time. Even so, enough           
features are able to be extracted to create a promising result,           
as discussed in the Section 3. 
 

  
Fig. 6.  Input image for testing with MeshNet. 
 
2)    Differentiable Rendering 

A major problem that persisted for decades is that most           
renderers operate with a randomized non-differentiable      
method. In most cases, this does not pose a problem, but for            
deep learning, the non-differentiability meant that a renderer        
could not be used as a loss function. This severely          
handicapped deep learning in the area of 3D reconstruction.         
However, recently multiple packages capable of      
differentiable rendering have come under development,      
most notably Mitsuba2 [12] and PyTorch3D [7]. Mitsuba2        
was explored for this project, but due to it still being in early             
development, it is not able to be utilized for our use case.            
PyTorch3D is slightly less realistic, but has an easy-to-use         
API, and integrates seamlessly with PyTorch. 

Using the differentiable renderer from PyTorch3D [7], an         
image of the output mesh is created. The output of the           
renderer is an image that is the same size as the original.            
From this point, a loss function is calculated. At this point,           
the only loss function in use is mean squared error. There is            
no fancy feature-based loss or any advanced 3D mesh         
property or geometry-based loss. 

As shown in Figure 7, there is an initial mesh,          
intermediate mesh, and the best mesh that was found. 

 

 
Fig. 7. Results of differentiable rendering with BabyMeshNet: (a) initial          
mesh; (b) intermediate result of mesh; (c) the best result of mesh 
 

As can be seen in Figure 7, the deformation is able to be             
somewhat accurately learned merely from an image-based       
loss function. The top of the teapot can clearly be seen, and            
the spout and handle are beginning to emerge. 

Given that this example is only run on one object, it is            
likely that the accuracy will increase tremendously when        
thousands of images are used for training. 

 
2)    Mesh Deformation by MeshNet 

One the potential of BabyMeshNet was demonstrated,       
MeshNet was created. MeshNet consists of four       
convolutional layers and 2 fully connected layers, one for         
vertex position regression, and one for vertex color        
estimation. The reference mesh was a sphere. The vertices         
in this mesh were offset by the values output by MeshNet           
and the vertex colors were updated. The output image is          
then generated by using PyTorch3D’s differentiable      
rendering pipeline. The structures of BabyMeshNet and       
MeshNet are shown in Appendix A and B respectively.         
MeshNet takes in the original image concatenated with the         
segmentation map (effectively 6 channels). At first, the        
network was trained with only mean squared error loss         
between the original image and the output image. However,         
this led to very blurry images that only minimally resembled          
a face. One such example is shown below in Figure 8. 

 

 
Fig. 8.  Original, terrible results 

 
The vertices were flying all over the place, and the          

coloration was almost completely random. In order to        
mitigate this, we experimented with different loss functions.        
Unfortunately, the most powerful mesh-based loss function,       
Chamfer Loss, seemed like it would not be usable, because          
the ground truth mesh is not known. However, a hack was           
found. The reference mesh was changed to be a hemisphere          
instead of a sphere to allow for more informed vertex          
regression (the optimizer would no longer waste time trying         
to regress hidden vertices because they would now all be          
visible). Additionally, a chamfer loss was added between        
the final mesh and the reference hemisphere. Although the         
hemisphere is not the goal mesh, it is close enough to the            
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shape of a face that with a low weight, this loss could serve             
as a regularization term to prevent runaway vertices. 

Even with this new loss and hemisphere reference mesh,         
the results were far from acceptable. At this point, the only           
loss was MSE with the original image, and Chamfer. To          
make the MSE loss more informative, the segmentation        
image was used to create a mask which got rid of the            
background in the original image and got rid of those same           
pixels in the rendered output image. Then, to improve         
training further, laplacian regularization loss, normal      
consistency loss, and edge length loss were added to make          
sure the surface was smooth and had relatively small         
triangles. Even with these loss functions, the network was         
still not learning very well. The final modification added         
was a VGG loss using a pre-trained VGG19 network. This          
was used to ensure feature consistency between the output         
image and the original image. The final loss function is          
below in (5). 

       (5)  .6l 5l .01l .1ll all = 0.5lmse + 0 V GG + 1 c + le + 0 n + 0 lap  
 
Where l​mse is the mean squared error, l​VGG is the vgg loss,            

l​c is the Chamfer loss, l​e is the edge loss, l​n is the normal              
consistency loss, and l​lap​ is the laplacian regularization loss. 

Even though all these loss functions were added, the         
result did not look realistic, although it did improve         
significantly. Some results are shown in Figure 9. as can be           
seen from the results, facial features are able to be found           
fairly accurately. These results are from 12 epochs of         
training. With more training, the accuracy would be further         
increased. 

We used 3x64x64 images with batch size 1 for training          
and testing. The batch size limitation is due to a bug in            
PyTorch3d, which would cause the program to crash if a          
batch size larger than 1 was used. If larger batch sizes and            
higher size of the images are used, more accurate results          
will be obtained. 

V. C​ONCLUSION 

We implemented various methods for 3D face generation        
including face landmark extraction and face segmentation.       
Also, we presented mesh deformation and differentiable       
rendering with BabyMeshNet and MeshNet. As shown in        
experimental results, the 3D face model was created from         
2D images. We used facial segments which were extracted         
by CNN. To get a 3D facial model, BabyMeshNet was          
created as an initial simple test. In order to improve the           
accuracy and represent more detailed 3D results with        
physical effects, we created a network, MeshNet, and the         
network was used with physics-based loss functions. As        
shown in the experimental results, 3D face was generated         
from a 2D image, even though the size of the input image is             
much small to represent details. 

In order to improve our network for 3D generation, an          
image whose size is higher than 64x64 can be used for           
training and testing. Also, more complicated networks such        
as residual networks with larger parameters can be used to          
get more features. Additionally, graph convolutional      

networks could be explored, which may be much more         
efficient at learning relationships between vertices. 

 
Fig. 9. Final results. Original Image, Rendered image, rendered image with           
higher contrast. 

  



 
 
EEE598 Topic: Physics-based Computer Vision 
Final Report 
 

 R​EFERENCES 
[1] V. Blanz and T. Vetter, “Face recognition based on fitting a 3D            

morphable model,” ​IEEE Trans. Pattern Anal. Mach. Intell. ​25(9),         
pp. 1063–1074, 2003. 

[2] X. Han, H. Laga, and M. Bennamoun, “Image-based 3D Object          
Reconstruction: State-of-the-Art and Trends in the Deep Learning        
Era,” ​IEEE Trans. Pattern Anal. Mach. Intell. pp.1, 20 November          
2019. 

[3] A.S. Jackson, A. Bulat, V. Argyriou, and G. Tzimiropoulos, “Large          
pose 3D face reconstruction from a single image via direct volumetric           
CNN regression,” in ​IEEE International Conference on Computer        
Vision​, Honolulu, HI, USA, 21-26 July 2017, pp. 1031-1039. 

[4] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.G. Jiang,             
“Pixel2Mesh: Generating 3d mesh models from single rgb images,”         
In ​European Conference on Computer Vision​, Munich, Germany,        
8-18 September 2018, pp. 52-67. 

[5] Y. ​Hu, D. Jiang, S. Yan, and L. Zhang, “Automatic 3D reconstruction            
for face recognition,” In ​IEEE International Conference on        
Automatic Face and Gesture Recognition​, Seoul, Korea, 17-19 May         
2004, pp. 843-848. 

[6] O. ​Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional         
networks for biomedical image segmentation,” In ​International       
Conference on Medical image computing and computer-assisted       
intervention​, Munich, Germany, 5-9 October 2015, pp. 234-241. 

[7] PyTorch3D A library for deep learning with 3D data. Available          
online: ​https://pytorch3d.or​g/ (accessed on 10 April 2020). 

[8] P. ​Huber, G. Hu, R. Tena, P. Mortazavian, P. Koppen, W.J.           
Christmas, M. Ratsch, and J. Kittler, “A Multiresolution 3D         
Morphable Face Model and Fitting Framework,” In International        
Joint Conference on Computer Vision, Imaging and Computer        
Graphics Theory and Applications​, Rome, Italy, 27-29 February        
2016. 

[9] T. ​Gerig, A. Morel-Forster, C. Blumer, B. Egger, M. ​Lüthi, S.           
Schönborn, and T. Vetter, “Morphable Face Models - An Open          
Framework​,” ​In IEEE International Conference on Automatic Face &         
Gesture Recognition​, Xian, China, 15-18 May 2018, pp. 75-82. 

[10] S. ​Benini, K. Khan, R. Leonardi R, M. Mauro, and P. Migliorati,            
“FASSEG: A FAce semantic SEGmentation repository for face image         
analysis,”  ​Data in brief.​ 24, June 2019. 

[11] V. ​Le, J. Brandt, Z. Lin, L. Bourdev, and T.S. Huang, “Interactive            
facial feature localization,” In ​European Conference on Computer        
Vision​, Berlin, Heidelberg, October 2012, pp. 679-692. 

[12] Mitsuba 2 Physics based renderer. Available online:       
https://www.mitsuba-renderer.org/​ (accessed on 10 April 2020). 

 
  

https://pytorch3d.org/
https://www.mitsuba-renderer.org/


 
 
EEE598 Topic: Physics-based Computer Vision 
Final Report 
 
 
Appendix A -- BabyMeshNet Model Summary 
 
--------------------------------------------------------------- 
        Layer (type)               Output Shape         Param # 
================================================================ 
            Conv2d-1           [-1, 8, 254, 254]               224 
            Conv2d-2           [-1, 12, 125, 125]             876 
            Conv2d-3           [-1, 16, 60, 60]              1,744 
            Conv2d-4           [-1, 32, 28, 28]              4,640 
            Linear-5              [-1, 7686]            48,214,278 
      SmallMeshNet-6      [-1, 2562, 3]                        0 
================================================================ 
Total params: 48,221,762 
Trainable params: 48,221,762 
Non-trainable params: 0 
  
Appendix B -- MeshNet Model Summary 
 
---------------------------------------------------------------- 
        Layer (type)               Output Shape                      Param # 
================================================================ 
            Conv2d-1         [-1, 16, 126, 126]                             880 
            Conv2d-2           [-1, 32, 61, 61]                            4,640 
            Conv2d-3           [-1, 64, 28, 28]                          18,496 
            Conv2d-4          [-1, 128, 12, 12]                         73,856 
            Linear-5                 [-1, 6339]                        29,216,451 
            Linear-6                 [-1, 6339]                         29,216,451 
           MeshNet-7  [[-1, 2113, 3], [-1, 2113, 3]]                        0 
================================================================ 
Total params: 58,530,774 
Trainable params: 58,530,774 
Non-trainable params: 0 
---------------------------------------------------------------- 
 


